

RNFtools manual

This is the manual of RNFtools which is an associate software package for Read Naming Format (RNF), a generic format for naming simulated Next-Generation Sequencing reads.

RNFtools can be used for simulation of NGS reads, evaluation of mappers, and conversion of RNF-compliant data.

Publication

	Břinda, V. Boeva, G. Kucherov. RNF: a general framework to evaluate NGS read mappers. Bioinformatics 32(1), pp. 136-139, 2016. [doi:10.1093/bioinformatics/btv524 [http://dx.doi.org/10.1093/bioinformatics/btv524]]

Links

Project webpage [http://karel-brinda.github.io/rnftools/] -
RNF specification [http://karel-brinda.github.io/rnf-spec/RNF.pdf] -
GitHub repository [http://github.com/karel-brinda/rnftools] -
Bug reporting [http://github.com/karel-brinda/rnftools/issues] -
Mailing list [http://groups.google.com/group/rnftools] -
Contact

Table of contents

	Introduction

	Introduction to RNFtools.

	Tutorials

	Tutorials demonstrating installation and basic usage of RNFtools.

	Reference

	Automatically generated documentation for RNFtools (including CLI variant rnftools).

	Additional information

	FAQs, supplementary information about RNFtools, information about state-of-the-art read simulators.

1. Introduction

RNFtools is an associate software package for RNF [http://github.com/karel-brinda/rnf-spec/], a generic format for
assigning read names of simulated Next-Generation Sequencing reads. The format
aims to remove dependency of evaluation tools of read mappers on the used read
simulators.

RNFtools consist of three principal parts:

	MIShmash (MIS => SIM => simulation) - a tool for simulating NGS reads in RNF format using existing simulators.

	LAVEnder (LAVE => EVAL => evaluation) - a tool for evaluation of NGS read mappers using simulated reads in RNF format.

	RNF format library - a Python library for handling the RNF format.

Technically, the entire RNFtools package is based on SnakeMake [http://bitbucket.org/johanneskoester/snakemake], a
Make [http://www.gnu.org/software/make]-like Python [http://python.org]-based software developed for creating bioinformatics
pipelines. The resulting pipelines are fully reproducible and they can be
distributed as single SnakeMake files.

There exists also a console variant of RNFtools with a basic functionality (see
Command-line tool).

1.1. How to start with RNFtools

First, we recommend to start with Tutorials which demonstrates how to
install RNFtools and how to use it. All examples are also located in a
dedicated directory [http://github.com/karel-brinda/rnftools/tree/master/examples/01_tutorial]. When you get familiar with basics, the main source of
information will be Reference.

If anything is not clear, please look into FAQ and if this question has
not been answered yet, send an e-mail to the Mailing list [http://groups.google.com/group/rnftools].

2. Tutorials

Tutorials demonstrate how to install RNFtools and how to use it. All examples are also located in a special directory [https://github.com/karel-brinda/rnftools/tree/master/examples/01_tutorial].

	2.1. Installation

	2.2. Hello world!

	2.3. Read simulation

	2.4. Mapper evalution

	2.5. Extending RNFtools

2.1. Installation

RNFtools is distributed as a Python-based package, which is distributed through
BioConda [https://bioconda.github.io/] (a bioinformatics channel for the Conda [https://conda.io/] package manager) and PIP [http://pip.pypa.io].
Since BioConda [https://bioconda.github.io/] does not require a root account and installs also all the
RNFtools dependencies, it is the recommended way of installation.

Contents

	Installation
	Requirements

	Installation using Bioconda (recommended)

	Installation using PIP from PyPI (recommended)

	Installation using Easy Install from PyPI

	Installation using PIP from GIT

	Installation using PIP without a root account

2.1.1. Requirements

Requirements for basic installation of RNFtools are:

	Unix-like operating system (Linux, OS X, etc.).

	Python [https://www.python.org] 3.3+.

When RNFtools is installed using BioConda [https://bioconda.github.io/], all the additional dependencies are
installed automatically. If not, installation of the following programs is up
to user.

	Art [https://www.niehs.nih.gov/research/resources/software/biostatistics/art/index.cfm]

	CuReSim [http://www.pegase-biosciences.com/curesim-a-customized-read-simulator/]

	DWGsim [https://github.com/nh13/DWGSIM]

	Mason [http://publications.imp.fu-berlin.de/962/]

	WGsim [https://github.com/lh3/wgsim]

	SamTools [http://www.htslib.org/]

2.1.2. Installation using Bioconda (recommended)

The easiest and safest approach of RNFtools installation is to create a
separate Bioconda [https://bioconda.github.io/] environment.

conda install -c bioconda rnftools

Once the environment is installed, you can activate it by

source activate rnftools

and deactivate by

source deactivate

Alternatively, RNFtools can be installed directly in the default Conda [https://conda.io/]
environment. However, this approach might not work in certain situations due
to possible collisions with the dependencies of your already installed
packages.

conda install -c bioconda rnftools

2.1.3. Installation using PIP from PyPI (recommended)

RNFtools can be installed using PIP [http://pip.pypa.io] from PyPI [https://pypi.python.org/pypi] by

pip3 install rnftools

If this command does not work, check if PIP3 is installed in your system (the
command may have a slightly different name, e.g., pip, pip-3,
pip3.4, pip-3.4). If not, install PIP by the official instructions [https://pip.pypa.io/en/latest/installing.html]
(or try easy_install3 pip).

Upgrade to the newest version can be done also using PIP [http://pip.pypa.io].

pip3 install --upgrade rnftools

2.1.4. Installation using Easy Install from PyPI

RNFtools can be installed also using `Easy Install`_:

easy_install3 rnftools

2.1.5. Installation using PIP from GIT

To install RNFtools directly from `GIT repository`_, run

git clone git://github.com/karel-brinda/rnftools
pip3 install rnftools

or

pip3 install git+http://github.com/karel-brinda/rnftools

2.1.6. Installation using PIP without a root account

First, we need to create a directory where RNFtools will be installed.

mkdir ~/rnftools

Then we have to add its path into the variable PYTHONUSERBASE

export PYTHONUSERBASE=~/rnftools

Now we can finally install RNFtools. The parameter --user implies installation
into the predefined directory.

pip3 install --user rnftools

As the last step, we need to add the following lines to ~/.bashrc

export PYTHONUSERBASE=~/rnftools
export PATH=$PATH:~/rnftools/bin

2.2. Hello world!

In this chapter, we show how to create and use RNFtools on a Hello world
example. Little knowledge of Python can be helpful, but it is not required.

RNFtools is based on Snakemake_, a Python-based Make-like build system. To
simulate reads or evaluate alignments, you create simple configuration Python
scripts and RNFtools subsequently creates a set of rules to be run by
Snakemake. The rules can be then executed in a single thread, in parallel
(--cores Snakemake parameter), or on a cluster. For more details about
Snakemake, please see its documentation [https://snakemake.readthedocs.io].

This approach allows to create big and reproducible pipelines, which are easy
to share (it suffices to publish a single configuration script).

Every RNFtools script consists of three parts:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	# 1) importing the rnftools Python package
import rnftools

2) all your Python code will go here
print("Hello world!")

3) including Snakemake rules created by RNFtools and defining the main
Snakemake rule (declaring which files are requested)
include: rnftools.include()
rule: input: rnftools.input()

As it is mentioned in the second comment, all your code should be inserted into
part 2. Now save this file with name Snakefile and run

snakemake

in the same directory. A “Hello world” message will be printed, together with
several Snakemake informative messages.

2.3. Read simulation

In this chapter, we show on several basic example how to simulate reads using a
component of RNFtools called MISmash.

2.3.1. Basic example

First, let us show how to simulate reads from a single genome, stored in a FASTA
file, using a single simulator. A corresponding RNFtools configuration
script can look as follows:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	import rnftools

rnftools.mishmash.sample("simple_example",reads_in_tuple=1)

put your reference genome here
fa="../../../example1.fa"

rnftools.mishmash.ArtIllumina(
	fasta=fa,
	number_of_read_tuples=10000,
	read_length_1=100,
	read_length_2=0,
)

include: rnftools.include()
rule: input: rnftools.input()

Lines 1, 15, 16 have been already described in the previous chapter. Function
rnf.mishmash.sample (line 3) initializes a new sample of simulated
“single-end reads”. When a new instance of rnftools.mishmash.ArtIllumina is
created (line 8), it is automatically registered to the last created sample.
This class is used for simulating reads by the Art Illumina read simulator. The
parameters signalize parameters of the simulation: fasta is the reference
file, number_of_read_tuples sets number of simulated read tuples, and
read_length_1 and read_length_2 indicate lengths of simulated reads.

Within the RNF framework, a single simulated unit is a read tuple, which
consists of one or more reads. For more details, see the RNFtools paper [http://dx.doi.org/10.1093/bioinformatics/btv524].
read_length_2=0 implies “single-end” simulation (in our notation: a single
read in every read tuple).

When we run snakemake, reads are simulated and we obtain the final
simple_example.fq file with all the simulated reads.

RNFtools supports several different read simulators. Their use is similar,
though their interfaces are slightly different. A full documentation of all the
supported simulators with all their parameters is available on the page
MIShmash.

2.3.2. Simulation of ‘paired-end’ reads

To simulate “paired-end reads” (i.e., read tuples of two reads), two minor
changes must be made in the original Snakefile. First,
rnftools.mishmash.sample must be called with reads_in_tuple=2, then
the length of second reads of a tuple must be set to a non-zero value.

Then the final Snakefile can be:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	import rnftools

rnftools.mishmash.sample("simple_example",reads_in_tuple=2)

fa="../../../example1.fa"

rnftools.mishmash.ArtIllumina(
	fasta=fa,
	number_of_read_tuples=10000,
	read_length_1=100,
	read_length_2=100,
)

include: rnftools.include()
rule: input: rnftools.input()

2.3.3. Different simulator

To change a simulator in our example, we just replace
rnftools.mishmash.ArtIllumina by another simulator, e.g.,
rnftools.mishmash.ArtIllumina. Parameters as fasta, read_length_1,
read_length_2, and number_of_read_tuples are the same for all the
simulators, but with several limitations:

	CuReSim supports only “single-end reads”.

	ART Illumina in “paired-end” mode can simulate only reads of equal lengths.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	import rnftools

rnftools.mishmash.sample("simple_example",reads_in_tuple=1)

fa="../../../example1.fa"

rnftools.mishmash.DwgSim(
	fasta=fa,
	number_of_read_tuples=10000,
	read_length_1=100,
	read_length_2=0,
)

include: rnftools.include()
rule: input: rnftools.input()

2.3.4. More genomes

To simulate reads from multiples reference within a single sample (in order to
simulate, e.g., a metagenome or a contamination), we create a new instance of
class of a simulator for each reference.

In the example below, we are simulating 10.000 read tuples from two
reference genomes.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

	import rnftools

rnftools.mishmash.sample("simple_example",reads_in_tuple=1)

fa1="../../../example1.fa"
fa2="../../../example2.fa"

rnftools.mishmash.ArtIllumina(
	fasta=fa1,
	number_of_read_tuples=10000,
	read_length_1=100,
	read_length_2=0,
)

rnftools.mishmash.ArtIllumina(
	fasta=fa2,
	number_of_read_tuples=10000,
	read_length_1=100,
	read_length_2=0,
)

include: rnftools.include()
rule: input: rnftools.input()

Once reads are simulated for each of the references, they are mixed and put
into the resulting FASTQ file.

2.3.5. More samples

We can also simulated multiple samples using a single Snakemake.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

	import rnftools

rnftools.mishmash.sample("simple_end_simulation",reads_in_tuple=1)

fa="../../../example1.fa"

rnftools.mishmash.ArtIllumina(
	fasta=fa,
	number_of_read_tuples=10000,
	read_length_1=100,
	read_length_2=0,
)

rnftools.mishmash.sample("paired_end_simulation",reads_in_tuple=2)

rnftools.mishmash.ArtIllumina(
	fasta=fa,
	number_of_read_tuples=10000,
	read_length_1=100,
	read_length_2=100,
)

include: rnftools.include()
rule: input: rnftools.input()

2.3.6. Sequence extraction

It may be sometimes useful to extract certain sequences from the reference file
before the simulation itself. For instance, reads from each sequence could be
simulated with a different coverage. For this purpose, we can use the
sequences parameter. Sequences for extraction can be specified either by
their number in the original FASTA file (starting from 0), or using their name.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

	import rnftools

rnftools.mishmash.sample("reads_first_sequence",reads_in_tuple=1)

rnftools.mishmash.ArtIllumina(
	fasta="example.fa",
	sequences=[0],
	number_of_read_tuples=10000,
	read_length_1=100,
	read_length_2=0,
)

rnftools.mishmash.sample("reads_second_sequence",reads_in_tuple=1)

rnftools.mishmash.ArtIllumina(
	fasta="example.fa",
	sequences=['seq2'],
	number_of_read_tuples=10000,
	read_length_1=100,
	read_length_2=0,
)

include: rnftools.include()
rule: input: rnftools.input()

2.3.7. Non-standard parameters

Not all command-line parameters of every simulator are directly supported by
RNFtools. However, such parameters can still be passed through the parameter
other_params like in this example:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	import rnftools

rnftools.mishmash.sample("simple_example",reads_in_tuple=1)

fa="../../../example1.fa"

rnftools.mishmash.ArtIllumina(
	fasta=fa,
	number_of_read_tuples=10000,
	read_length_1=100,
	read_length_2=0,
	other_params="-qs 5",
)

include: rnftools.include()
rule: input: rnftools.input()

2.4. Mapper evalution

In this chapter, we show how to evaluate read mappers using RNFtools.
For this task, we will use a component called LAVEnder.

2.4.1. Basic example

The basic approach of mapper evaluation consists of the following steps:

	Simulation of reads (see the previous chapter of this tutorial).

	Mapping reads to a reference genome.

	Creating the report.

The first step was described in the previous chapter. Once your simulated reads
are mapped (step 2), you can create the following Snakefile:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	import rnftools

rnftools.lavender.Report(
	# insert a list of directories with BAM files here:
	bam_dirs=["../02_mapping"],
	name="report_SE",
	keep_intermediate_files=True,
	allowed_delta=5,
	default_x_run=[0.01,0.5]
)

rule all: input: rnftools.input()

include: rnftools.include()

When you run snakemake, RNFtools detect all BAM files in the specified
directories, and starts evaluation and creates an interactive HTML report
containing one panel for each directory. The name argument defines the
name of the report (the final HTML file will have name {name}.html).
Parameter keep_intermediate_files sets if the intermediate ES (evaluated
individual segments) and ET (evaluated read pairs) files created during
evaluation should be kept. The argument allowed_delta is used for setting
maximum allowed distance between reported position and original position for
considering the segment still correctly mapped.

2.4.2. Auxiliary files

For every BAM file, the following files are created.

	HTML – detailed report for the BAM file

	ES (mapping information: segments) – file with information about mapping categories of each segment

	ET (mapping information: read tuples) – file with information about category of entire read tuples

	ROC – source file for plotting graphs, it contains information about how many reads are in which category in dependence on threshold on mapping qualities

	GP – GnuPlot file used for plotting detailed graphs for this BAM (SVG, PDF)

2.4.3. Adjusting plotted graphs

For details about adjusting graphs, please see LAVEnder.

First, you can change default values for the basic graphs:

	range of x and y axes (default_x_run, default_y_run),

	sizes of created PDF and SVG files (default_pdf_size_cm, default_svg_size_px)

	label of x-axis (default_x_label)

	values on x-axis (default_x_axis).

Then you can add your own graphs using rnftools.lavender.Report.add_graph method.

2.5. Extending RNFtools

This chapter describes how to develop an extension for a new read simulator.

2.5.1. Step 1: Wrapper of the simulator in RNFtools

All wrappers of read simulators are located in this directory:
https://github.com/karel-brinda/rnftools/blob/master/rnftools/mishmash/. To
create a new wrapper, copy some existing one and modify the code inside.

Method __init__ saves the parameters for a simulation. Some of them are
mandatory (read length, FASTA file of the genome, etc.) and these are passed to
__init__ of the mother abstract class for a simulator.

Method get_input returns list of input files for simulation and one of them
is your program.

Method, create_fq simulates reads (by calling a shell command using
rnftools.utils.shell) and converts the obtained files to RNF-FASTQ.

The previous step should be done using a dedicated static method (typically
named recode_*_reads). All code for conversion should be located in this
method so that it can be used externally without creating an instance of the
class.

When all these functions are created/adjusted, the class should be imported in
__init__.py. Get inspired by existing code, with a high probability only
little changes will be needed.

2.5.2. Step 2: Support in the rnftools program

The last step is plugging your converting static function into rnftools
console program, which is contained in this file:
https://github.com/karel-brinda/rnftools/blob/master/rnftools/scripts.py. You
will have to add a new subcommand (which will call the static function) and
create a parser for it. Again, follow existing code.

2.5.3. Step 3: Tests

Add corresponding tests (see the test directory).

3. Reference

Here you can find an automatically generated reference for all components of RNFtools.

	3.1. MIShmash

	3.2. LAVEnder

	3.3. RNF format library

	3.4. Command-line tool

3.1. MIShmash

Here you can find documentation for all supported NGS read simulators. Please note that you can use simplified names of classes like rnftools.mishmash.ArtIllumina (instead of longer rnftools.mishmash.artIllumina.ArtIllumina). General information about read simulators can be found on a special page called Exhaustive list of read simulators.

Contents

	MIShmash
	Classes for individual simulators
	Art-Illumina: rnftools.mishmash.ArtIllumina

	CuReSim: rnftools.mishmash.CuReSim

	DwgSim: rnftools.mishmash.DwgSim

	Mason (Illumina mode): rnftools.mishmash.MasonIllumina

	WgSim: rnftools.mishmash.WgSim

	Abstract class for a simulator: rnftools.mishmash.Source

3.1.1. Classes for individual simulators

3.1.1.1. Art-Illumina: rnftools.mishmash.ArtIllumina

3.1.1.2. CuReSim: rnftools.mishmash.CuReSim

3.1.1.3. DwgSim: rnftools.mishmash.DwgSim

3.1.1.4. Mason (Illumina mode): rnftools.mishmash.MasonIllumina

3.1.1.5. WgSim: rnftools.mishmash.WgSim

3.1.2. Abstract class for a simulator: rnftools.mishmash.Source

3.2. LAVEnder

Contents

	LAVEnder
	Report class: rnftools.lavender.Report

	Panel class: rnftools.lavender.Panel

	BAM class: rnftools.lavender.Bam

3.2.1. Report class: rnftools.lavender.Report

3.2.2. Panel class: rnftools.lavender.Panel

3.2.3. BAM class: rnftools.lavender.Bam

3.3. RNF format library

3.3.1. Read tuple: rnftools.rnfformat.ReadTuple

3.3.2. Segment: rnftools.rnfformat.Segment

3.3.3. RNF profile: rnftools.rnfformat.RnfProfile

3.3.4. FASTQ creator: rnftools.rnfformat.FqCreator

3.3.5. FASTQ merger: rnftools.rnfformat.FqMerger

3.3.6. RNF validator: rnftools.rnfformat.Validator

3.4. Command-line tool

Even though SnakeMake-based approach is the prefered way to use RNFtools, we provide also a command-line tool
rnftools with most of functionality. Here you can find help messages for its subcommands.

Contents

	Command-line tool
	General
	rnftools (list of subcommands)

	rnftools check

	rnftools publication

	rnftools validate

	rnftools liftover

	MIShmash
	rnftools sam2rnf

	rnftools art2rnf

	rnftools curesim2rnf

	rnftools dwgsim2rnf

	rnftools mason2rnf

	rnftools wgsim2rnf

	rnftools merge

	LAVEnder
	rnftools sam2es

	rnftools es2et

	rnftools et2roc

	rnftools sam2roc

3.4.1. General

3.4.1.1. rnftools (list of subcommands)

$ rnftools -h

usage: rnftools [-h]
 {,check,publication,validate,liftover,sam2rnf,art2rnf,curesim2rnf,dwgsim2rnf,mason2rnf,wgsim2rnf,merge,sam2es,es2et,et2roc,sam2roc}
 ...

==
RNFtools - http://rnftools.rtfd.org

version: 0.2.2
contact: Karel Brinda (karel.brinda@univ-mlv.fr)
==

positional arguments:
 {,check,publication,validate,liftover,sam2rnf,art2rnf,curesim2rnf,dwgsim2rnf,mason2rnf,wgsim2rnf,merge,sam2es,es2et,et2roc,sam2roc}

 check Check for the latest version.
 publication Print information about the associated publication.
 validate Validate RNF names in a FASTQ file.
 liftover Liftover genomic coordinates in RNF names.

 ---------------------[MIShmash]---------------------
 sam2rnf Convert a SAM/BAM file to RNF-FASTQ.
 art2rnf Convert output of Art to RNF-FASTQ.
 curesim2rnf Convert output of CuReSim to RNF-FASTQ.
 dwgsim2rnf Convert output of DwgSim to RNF-FASTQ.
 mason2rnf Convert output of Mason to RNF-FASTQ.
 wgsim2rnf Convert output of WgSim to RNF-FASTQ.
 merge Merge RNF-FASTQ files and convert the output to
 'traditional' FASTQ.

 ---------------------[LAVEnder]---------------------
 sam2es Convert SAM/BAM with reads in RNF to ES (evaluation of
 segments).
 es2et Convert ES to ET (evaluation of read tuples).
 et2roc Convert ET to ROC (final statistics).
 sam2roc Previous three steps in a single command.

optional arguments:
 -h, --help show this help message and exit

3.4.1.2. rnftools check

$ rnftools check -h

usage: rnftools check [-h]

Check if RNFtools and SMBL are up-to-date.

optional arguments:
 -h, --help show this help message and exit

3.4.1.3. rnftools publication

$ rnftools publication -h

usage: rnftools publication [-h]

Print information about the associated publication.

optional arguments:
 -h, --help show this help message and exit

3.4.1.4. rnftools validate

$ rnftools validate -h

usage: rnftools validate [-h] -i file [-w] [-a]

Validate RNF names in a FASTQ file.

optional arguments:
 -h, --help show this help message and exit
 -i file, --fastq file
 FASTQ file to be validated.
 -w, --warnings-as-errors
 Treat warnings as errors.
 -a, --all-occurrences
 Report all occurrences of warnings and errors.

3.4.1.5. rnftools liftover

$ rnftools liftover -h

usage: rnftools liftover [-h] [-c file] -g int [-x file] [--invert]
 [--input-format str] [--output-format str]
 input output

Liftover genomic coordinates in RNF names in a SAM/BAM files or in a FASTQ
file.

positional arguments:
 input Input file to be transformed (- for standard input).
 output Output file to be transformed (- for standard output).

optional arguments:
 -h, --help show this help message and exit
 -c file, --chain file
 Chain liftover file for coordinates transformation.
 [no transformation]
 -g int, --genome-id int
 ID of genome to be transformed.
 -x file, --faidx file
 Fasta index of the reference sequence. [extract from
 chain file]
 --invert Invert chain file (transformation in the other
 direction).
 --input-format str Input format (SAM/BAM/FASTQ). [autodetect]
 --output-format str Output format (SAM/BAM/FASTQ). [autodetect]

3.4.2. MIShmash

3.4.2.1. rnftools sam2rnf

$ rnftools sam2rnf -h

usage: rnftools sam2rnf [-h] -s file -o file -x file [-g int] [-u]

Convert a SAM/BAM file to RNF-FASTQ.

optional arguments:
 -h, --help show this help message and exit
 -s file, --sam file Input SAM/BAM with true (expected) alignments of the
 reads (- for standard input).
 -o file, --rnf-fastq file
 Output FASTQ file (- for standard output).
 -x file, --faidx file
 FAI index of the reference FASTA file (- for standard
 input). It can be created using 'samtools faidx'.
 -g int, --genome-id int
 Genome ID in RNF (default: 1).
 -u, --allow-unmapped Allow unmapped reads.

3.4.2.2. rnftools art2rnf

$ rnftools art2rnf -h

usage: rnftools art2rnf [-h] -s file -o file -x file [-g int] [-u] [-n str]

Convert an Art SAM file to RNF-FASTQ. Note that Art produces non-standard SAM
files and manual editation might be necessary. In particular, when a FASTA
file contains comments, Art left them in the sequence name. Comments must be
removed in their corresponding @SQ headers in the SAM file, otherwise all
reads are considered to be unmapped by this script.

optional arguments:
 -h, --help show this help message and exit
 -s file, --sam file Input SAM/BAM with true (expected) alignments of the
 reads (- for standard input).
 -o file, --rnf-fastq file
 Output FASTQ file (- for standard output).
 -x file, --faidx file
 FAI index of the reference FASTA file (- for standard
 input). It can be created using 'samtools faidx'.
 -g int, --genome-id int
 Genome ID in RNF (default: 1).
 -u, --allow-unmapped Allow unmapped reads.
 -n str, --simulator-name str
 Name of the simulator (for RNF).

3.4.2.3. rnftools curesim2rnf

$ rnftools curesim2rnf -h

usage: rnftools curesim2rnf [-h] -c file -o file -x file [-g int]

Convert a CuReSim FASTQ file to RNF-FASTQ.

optional arguments:
 -h, --help show this help message and exit
 -c file, --curesim-fastq file
 CuReSim FASTQ file (- for standard input).
 -o file, --rnf-fastq file
 Output FASTQ file (- for standard output).
 -x file, --faidx file
 FAI index of the reference FASTA file (- for standard
 input). It can be created using 'samtools faidx'.
 -g int, --genome-id int
 Genome ID in RNF (default: 1).

3.4.2.4. rnftools dwgsim2rnf

$ rnftools dwgsim2rnf -h

usage: rnftools dwgsim2rnf [-h] [-p str] [-e] -o file -x file [-g int] [-u]

Convert a DwgSim FASTQ file (dwgsim_prefix.bfast.fastq) to RNF-FASTQ.

optional arguments:
 -h, --help show this help message and exit
 -p str, --dwgsim-prefix str
 Prefix for DwgSim.
 -e, --estimate-unknown
 Estimate unknown values.
 -o file, --rnf-fastq file
 Output FASTQ file (- for standard output).
 -x file, --faidx file
 FAI index of the reference FASTA file (- for standard
 input). It can be created using 'samtools faidx'.
 -g int, --genome-id int
 Genome ID in RNF (default: 1).
 -u, --allow-unmapped Allow unmapped reads.

3.4.2.5. rnftools mason2rnf

$ rnftools mason2rnf -h

usage: rnftools mason2rnf [-h] -s file -o file -x file [-g int] [-u] [-n str]

Convert a Mason SAM file to RNF-FASTQ.

optional arguments:
 -h, --help show this help message and exit
 -s file, --sam file Input SAM/BAM with true (expected) alignments of the
 reads (- for standard input).
 -o file, --rnf-fastq file
 Output FASTQ file (- for standard output).
 -x file, --faidx file
 FAI index of the reference FASTA file (- for standard
 input). It can be created using 'samtools faidx'.
 -g int, --genome-id int
 Genome ID in RNF (default: 1).
 -u, --allow-unmapped Allow unmapped reads.
 -n str, --simulator-name str
 Name of the simulator (for RNF).

3.4.2.6. rnftools wgsim2rnf

$ rnftools wgsim2rnf -h

usage: rnftools wgsim2rnf [-h] -1 file [-2 file] -o file -x file [-g int] [-u]

Convert WgSim FASTQ files to RNF-FASTQ.

optional arguments:
 -h, --help show this help message and exit
 -1 file, --wgsim-fastq-1 file
 First WgSim FASTQ file (- for standard input)
 -2 file, --wgsim-fastq-2 file
 Second WgSim FASTQ file (in case of paired-end reads,
 default: none).
 -o file, --rnf-fastq file
 Output FASTQ file (- for standard output).
 -x file, --faidx file
 FAI index of the reference FASTA file (- for standard
 input). It can be created using 'samtools faidx'.
 -g int, --genome-id int
 Genome ID in RNF (default: 1).
 -u, --allow-unmapped Allow unmapped reads.

3.4.2.7. rnftools merge

$ rnftools merge -h

usage: rnftools merge [-h] -i inp [inp ...] -m mode -o out

todo

optional arguments:
 -h, --help show this help message and exit
 -i inp [inp ...] input FASTQ files
 -m mode mode for mergeing files (single-end / paired-end-bwa / paired-end-bfast)
 -o out output prefix

Source RNF-FASTQ files should satisfy the following conditions:
 1) Each file contains only reads corresponding to one genome (with the
 same genome id).
 2) All files contain reads of the same type (single-end / paired-end).
 3) Reads with more reads per tuple (e.g., paired-end) have '/1', etc.
 in suffix (for identification of nb of read).

3.4.3. LAVEnder

3.4.3.1. rnftools sam2es

$ rnftools sam2es -h

usage: rnftools sam2es [-h] -i file -o file [-d int]

todo

optional arguments:
 -h, --help show this help message and exit
 -i file, --sam file SAM/BAM with aligned RNF reads(- for standard input).
 -o file, --es file Output ES file (evaluated segments, - for standard
 output).
 -d int, --allowed-delta int
 Tolerance of difference of coordinates between true
 (i.e., expected) alignment and real alignment (very
 important parameter!) (default: 5).

3.4.3.2. rnftools es2et

$ rnftools es2et -h

usage: rnftools es2et [-h] -i file -o file

todo

optional arguments:
 -h, --help show this help message and exit
 -i file, --es file Input ES file (evaluated segments, - for standard
 input).
 -o file, --et file Output ET file (evaluated read tuples, - for standard
 output).

3.4.3.3. rnftools et2roc

$ rnftools et2roc -h

usage: rnftools et2roc [-h] -i file -o file

todo

optional arguments:
 -h, --help show this help message and exit
 -i file, --et file Input ET file (evaluated read tuples, - for standard
 input).
 -o file, --roc file Output ROC file (evaluated reads, - for standard
 output).

3.4.3.4. rnftools sam2roc

$ rnftools sam2roc -h

usage: rnftools sam2roc [-h] -i file -o file [-d int]

todo

optional arguments:
 -h, --help show this help message and exit
 -i file, --sam file SAM/BAM with aligned RNF reads(- for standard input).
 -o file, --roc file Output ROC file (- for standard output).
 -d int, --allowed-delta int
 Tolerance of difference of coordinates between true
 (i.e., expected) alignment and real alignment (very
 important parameter!) (default: 5).

4. Additional information

	4.1. FAQ

	4.2. Information for developers

	4.3. Exhaustive list of read simulators

4.1. FAQ

Frequently asked questions.

Contents

	FAQ
	A script which used to work does not work any more

4.1.1. A script which used to work does not work any more

Try to upgrade RNFtools to the latest version

pip install --upgrade rnftools

If the problem still appears, please send us an e-mail to karel.brinda@gmail.com.

4.2. Information for developers

Do you develop bioinformatics software? Here you will find how RNF and RNFtools can be useful for you .

Contents

	Information for developers
	Do you develop a read mapper?

	Do you develop a read simulator?

	Do you develop an evaluation tool for read mappers?

4.2.1. Do you develop a read mapper?

RNFtools can help you to debug your mapper. You can:

	Find reads which were not aligned correctly (when tuning your algorithm).

	Test how successful your mapper is in dependence on parameters of simulation (error rate, etc.).

	Test if contamination reads are well detected and staying really unaligned.

	Test which impact have pre- and post-processing tools (such as read clustering tools or re-alignment tools) in combination with you mapper.

First you can start with some simple simulator (e.g., WgSim) for basic tests and later easily switch to more realistic simulations with ART of Mason.

4.2.2. Do you develop a read simulator?

Even though MIShmash currently supports several simulators, implicit support of RNF in simulators is preferable. Usually, simulators do not save as much information as RNF does, hence MIShmash must sometimes estimate some of these unknown values which brings noise into data. Direct support of RNF support in simulators would imply higher precision in the forthcoming analysis as well as better usability of your software.

Adding support for RNF into your simulator is a simple step since the format is easy to adopt. For existing software, we recommend to add an extra parameter switching internal naming procedure to RNF.

RNFtools can also help you to debug your simulator. Switching between your simulator and another one, you can check if obtained results are similar as they should be. If not, you might have bugs in your code (such as coordinates of simulation are incorrectly shifted by few positions, etc.).

4.2.3. Do you develop an evaluation tool for read mappers?

RNF enables you writing a universal evaluation tool, compatible with all RNF-compatible read simulators and all simulators supported by MIShmash.

4.3. Exhaustive list of read simulators

This webpage used to contain a list of existing read simulators. This
list has been completed is now available in Section 2.4 (pp. 13-16) of the
following thesis:

Publication

K. Břinda. Novel computational techniques for mapping and classifying Next-Generation Sequencing data.
Université Paris-Est, France, 2016. [pdf [http://brinda.cz/publications/brinda_phd.pdf]]

Index

 _static/plus.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/up-pressed.png

_static/file.png

_static/comment-bright.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/down.png

nav.xhtml

 Table of Contents

 		RNFtools manual

